Home

Ukłucie Tłumienie Wydrążony biio4 band gap Aktywny licznik Promień

Effects of Fluorination and Molybdenum Codoping on Monoclinic BiVO4  Photocatalyst by HSE Calculations | ACS Omega
Effects of Fluorination and Molybdenum Codoping on Monoclinic BiVO4 Photocatalyst by HSE Calculations | ACS Omega

Materials Chemistry A
Materials Chemistry A

Calculated band structures of: (a) m-BiVO 4 , (b) MoS 2 , (c) WS 2 ,... |  Download Scientific Diagram
Calculated band structures of: (a) m-BiVO 4 , (b) MoS 2 , (c) WS 2 ,... | Download Scientific Diagram

Catalysts | Free Full-Text | Network Structured CuWO4/BiVO4/Co-Pi  Nanocomposite for Solar Water Splitting
Catalysts | Free Full-Text | Network Structured CuWO4/BiVO4/Co-Pi Nanocomposite for Solar Water Splitting

Composite Photocatalysts Containing BiVO4 for Degradation of Cationic Dyes  | Scientific Reports
Composite Photocatalysts Containing BiVO4 for Degradation of Cationic Dyes | Scientific Reports

Structural stability, band structure and optical properties of different  BiVO4 phases under pressure | SpringerLink
Structural stability, band structure and optical properties of different BiVO4 phases under pressure | SpringerLink

Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s  and V d Orbitals
Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals

Boosting the Visible-Light Photoactivity of BiOCl/BiVO4/N-GQD Ternary  Heterojunctions Based on Internal Z-Scheme Charge Transfer of N-GQDs:  Simultaneous Band Gap Narrowing and Carrier Lifetime Prolonging | ACS  Applied Materials & Interfaces
Boosting the Visible-Light Photoactivity of BiOCl/BiVO4/N-GQD Ternary Heterojunctions Based on Internal Z-Scheme Charge Transfer of N-GQDs: Simultaneous Band Gap Narrowing and Carrier Lifetime Prolonging | ACS Applied Materials & Interfaces

Insights into the electronic bands of WO3/BiVO4/TiO2, revealing high solar  water splitting efficiency - Journal of Materials Chemistry A (RSC  Publishing)
Insights into the electronic bands of WO3/BiVO4/TiO2, revealing high solar water splitting efficiency - Journal of Materials Chemistry A (RSC Publishing)

Electronic and optical competence of TiO2/BiVO4 nanocomposites in the  photocatalytic processes | Scientific Reports
Electronic and optical competence of TiO2/BiVO4 nanocomposites in the photocatalytic processes | Scientific Reports

Band structure of pure BiVO 4 associated with the energetic value of... |  Download Scientific Diagram
Band structure of pure BiVO 4 associated with the energetic value of... | Download Scientific Diagram

Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4  nanocomposite: a first-principles study - Physical Chemistry Chemical  Physics (RSC Publishing)
Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: a first-principles study - Physical Chemistry Chemical Physics (RSC Publishing)

Synthesis and Doping Strategies to Improve the Photoelectrochemical Water  Oxidation Activity of BiVO4 Photoanodes
Synthesis and Doping Strategies to Improve the Photoelectrochemical Water Oxidation Activity of BiVO4 Photoanodes

Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to  largely improve the visible light induced photocatalytic activity -  ScienceDirect
Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity - ScienceDirect

Fabrication of core-shell BiVO4@Fe2O3 heterojunctions for realizing  photocatalytic hydrogen evolution via conduction band elevation -  ScienceDirect
Fabrication of core-shell BiVO4@Fe2O3 heterojunctions for realizing photocatalytic hydrogen evolution via conduction band elevation - ScienceDirect

Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to  largely improve the visible light induced photocatalytic activity -  ScienceDirect
Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity - ScienceDirect

Figure 6 | Graphene/BiVO4/TiO2 nanocomposite: tuning band gap energies for  superior photocatalytic activity under visible light | SpringerLink
Figure 6 | Graphene/BiVO4/TiO2 nanocomposite: tuning band gap energies for superior photocatalytic activity under visible light | SpringerLink

Band structures of BiVO4: a 1 × 1 × 1, b 2 × 1 × 1, c 2 × 2 × 1... |  Download Scientific Diagram
Band structures of BiVO4: a 1 × 1 × 1, b 2 × 1 × 1, c 2 × 2 × 1... | Download Scientific Diagram

Structural stability, band structure and optical properties of different  BiVO4 phases under pressure | SpringerLink
Structural stability, band structure and optical properties of different BiVO4 phases under pressure | SpringerLink

Phase transition-induced band edge engineering of BiVO4 to split pure water  under visible light | PNAS
Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light | PNAS

A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high  tunable photovoltage for water splitting | Scientific Reports
A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting | Scientific Reports

Frontiers | Effects of Zirconium Doping Into a Monoclinic Scheelite BiVO4  Crystal on Its Structural, Photocatalytic, and Photoelectrochemical  Properties
Frontiers | Effects of Zirconium Doping Into a Monoclinic Scheelite BiVO4 Crystal on Its Structural, Photocatalytic, and Photoelectrochemical Properties

BISMUTH – BASED OXIDE SEMICONDUCTORS: MILD SYNTHESIS AND PRACTICAL  APPLICATIONS by HARI KRISHNA TIMMAJI Presented to the Facu
BISMUTH – BASED OXIDE SEMICONDUCTORS: MILD SYNTHESIS AND PRACTICAL APPLICATIONS by HARI KRISHNA TIMMAJI Presented to the Facu

Efficient solar water splitting by enhanced charge separation in a bismuth  vanadate-silicon tandem photoelectrode | Nature Communications
Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode | Nature Communications

Phase transition-induced band edge engineering of BiVO4 to split pure water  under visible light | PNAS
Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light | PNAS

Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to  largely improve the visible light induced photocatalytic activity -  ScienceDirect
Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity - ScienceDirect